Prelim Examination 2006 / 2007 (Assessing Units 1 & 2)

MATHEMATICS Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer **all** questions.
- 3. Full credit will be given only where the solution contains appropriate working.
- 4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Given
$$f(x) = e^{-2x} \tan 4x$$
, $0 < x < \frac{\pi}{8}$, obtain $f'(x)$. 3

(b) For
$$y = \frac{\ln 5x}{x-1}$$
, where x > 1, determine $\frac{dy}{dx}$ in its simplest form. 3

2. For what value of *t* does the system of equations

$$x + 2y - 3z = -7$$

$$4x - y + 2z = 9$$

$$3x - 2y + tz = 13$$

have no solution?

3. Verify that 1 - 3i is a solution of $z^4 - 4z^3 + 11z^2 - 14z - 30 = 0$. Hence express $z^4 - 4z^3 + 11z^2 - 14z - 30$ in the form $(z + a)(z + b)(z^2 + cz + d)$,

where a, b, c and d are real numbers.

4. Use the substitution $x = 3\cos\theta$ to show that

$$\int_{\frac{3}{2}}^{3} \frac{dx}{\sqrt{9-x^2}} = \frac{\pi}{3}$$
 6

5. Obtain the binomial expansion of
$$\left(3a^2 - \frac{4}{b}\right)^5$$
. 3

6. Use integration by parts to evaluate
$$\int_{0}^{1} x^2 e^{-x} dx$$
. 5

7. Determine whether the function $f(x) = x^2 \cos x + x^3$ is odd, even or neither. Justify your answer.

3

5

5

8. A spherical balloon is being inflated. Its volume, $V \text{ cm}^3$, is increasing at the rate of $\frac{30\pi}{7}$ cm³ per second.

Find the rate at which the radius is increasing with respect to time when the volume is $\frac{36\pi}{5}$ cm³.

[Note: The volume of a sphere is given by
$$V = \frac{4}{3} \pi r^3$$
.] 5

9. Prove that if *n* is odd then
$$n^4 - 1$$
 is divisible by 8.

10. (*a*) Obtain partial fractions for

$$\frac{9}{x^2-9}$$

(*b*) Hence evaluate

$$\int_{0}^{1} \frac{x^{2}}{x^{2} - 9} \, dx \, . \tag{4}$$

11. The function f is defined by

$$f(x) = \frac{x^2}{x+3} \quad , x \neq -3.$$

<i>(a)</i>	Obtain algebraically the asymptotes of the graph of f .	3
(<i>b</i>)	Find the stationary points of f and justify their nature.	5
(<i>c</i>)	Sketch the curve showing clearly the features found in (<i>a</i>) and (<i>b</i>).	2
(<i>d</i>)	Write down the coordinates of the stationary points of the graph of $g(x) = 10 + f(x) $.	2

3

- 12. The first two terms of a series are $1 + \sqrt{2}$ and $1 + \frac{1}{\sqrt{2}}$.
 - (a) If the series is arithmetic, show that the common difference is $-\frac{1}{2}\sqrt{2}$. Show also that the sum of the first ten terms is $\frac{5}{2}(4-5\sqrt{2})$.
 - (b) If the series is geometric, show that the sum to infinity exists.

Show also that
$$S_{\infty} = 4 + 3\sqrt{2}$$
. 5

4

6

13. A solid is formed by rotating the curve $y = x^2 + 4$ between x = 1 and x = t, t > 1, through 360^0 about the y – axis.

Find the value of t given that the volume of the solid formed is 40π units³.

[END OF QUESTION PAPER]

Marking Scheme - Advanced Higher Grade 2006/2007 Prelim (Assessing Units 1 & 2)

	Give one mark for each •	Illustrations for awarding each mark
1(<i>a</i>)	ans: $f'(x) = 2e^{-2x}(2\sec^2 4x - \tan 4x)$	arks
	 knows to use product rule differentiates e^{-2x} correctly differentiates tan4x 	• • $-2e^{-2x}$ • $4\sec^2 4x$
1(b)	ans: $\frac{dy}{dx} = \frac{x(1 - \ln 5x) - 1}{x(x - 1)^2}$ 3 m	arks
	 knows to use the quotient rule differentiates correctly	• $\frac{\frac{x-1}{x} - \ln 5x}{\frac{(x-1)^2}}$
	• correct simplification for $\frac{dy}{dx}$	• $\frac{(x-1)^2}{x(x-1)^2}$
2	ans: $t = \frac{31}{9}$ 5 m	
	• correct augmented matrix	
	• first modified system correct	
	• second modified system correct	
	• third modified system correct	• $\begin{pmatrix} 1 & 2 & -3 & -7 \\ 0 & -9 & 14 & 37 \\ 0 & 0 & t - \frac{31}{9} \frac{10}{9} \end{pmatrix}$
	• solves for <i>t</i>	• $t=\frac{31}{9}$

	Give one mark for each •	Illustrations for awarding each mark
3	ans: Proof, $(z-3)(z+1)(z^2-2z+10)$	
	 5 marks verifies that 1 - 3i is a solution knows that 1 + 3i is a solution uses 1 + 3i for substitution or synthetic division finds z² - 2z - 3 = (z - 3)(z + 1) finds z² - 2z + 10 factor 	 correct substitution or synthetic division 1 + 3i is a solution correct substitution or synthetic division z² - 2z - 3 = (z - 3)(z + 1) z² - 2z + 10
4	ans: Proof6 marks• starts substitution• changes limits correctly• correct substitution• deals with denominator• correctly integrates• substitutes limits correctly	• $dx = -3\sin\theta \ d\theta$ • $\frac{3}{2} \rightarrow \frac{\pi}{3}, 3 \rightarrow 0$ • $\int_{\frac{\pi}{3}}^{0} \frac{-3\sin\theta d\theta}{\sqrt{9 - 9\cos^2\theta}}$ • $\int_{\frac{\pi}{3}}^{0} \frac{-3\sin\theta d\theta}{3\sin\theta}$ • $-\left[\theta\right]_{\frac{\pi}{3}}^{0}$ • $\frac{\pi}{3}$
5	ans: $243a^{10} - \frac{1620a^8}{b} + \frac{4320a^6}{b^2} - \frac{5760a^4}{b^3} + \frac{3840a^2}{b^4} - \frac{1024}{b^6}$ 3 marks	
	• correct binomial expression	• $\sum_{r=0}^{5} {\binom{5}{r}} (3a^2)^{5-r} \left(\frac{-4}{b}\right)^r (3a^2)^5 + 5(3a^2)^4 \left(\frac{-4}{b}\right) + 10(3a^2)^3 \left(\frac{-4}{b}\right)^2$
	• correct expansion	• $10(3a^2)^2 \left(\frac{-4}{b}\right)^3 + 5(3a^2) \left(\frac{-4}{b}\right)^4 + \left(\frac{-4}{b}\right)^5$
	correct simplification	• answer

	Give one mark for each •	Illustrations for awarding each mark
6	ans: $2 - 5e^{-1}$ 5 marks	
	• uses integration by parts correctly	• $\left[-x^2 e^{-x}\right]_0^1 + \int_0^1 2x e^{-x} dx$ • $\left[-2x e^{-x}\right]_0^1 + \int_0^1 2e^{-x} dx$
	• uses integration by parts for a second time	• $\left[-2xe^{-x}\right]_{0}^{1} + \int_{0}^{1} 2e^{-x} dx$
	• integrates correctly	• $ -2e^{-x} _{0}^{1}$
	• substitutes limits correctly	• $-e^{-1}-2e^{-1}-2e^{-1}+2e^{0}$
	correct evaluation	• $2 - \frac{5}{e}$
7	ans: Neither 3 marks	
	• knows to find $f(-x)$	• $f(-x) = (-x)^2 \cos(-x) + (-x)^3$
	• finds $f(-x)$ correctly	• $f(-x) = x^2 \cos x - x^3$
	correct conclusion	• Neither
8	ans: 0.35 [cm/s] 5 marks	
	• knows how find $\frac{dr}{dt}$	• $\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt}$
	• finds $\frac{dr}{dV}$ correctly	• $\frac{dr}{dV} = \frac{1}{4\pi r^2}$
	• finds correct formula for $\frac{dr}{dt}$	• $\frac{dr}{dt} = \frac{15}{14r^2}$
	• finds correct radius	• $r = 1.75$
	• evaluates $\frac{dr}{dt}$ correctly	• $\frac{dr}{dt} = 0.35$
9	ans: Proof 3 marks	
	• knows how to start proof : $n = 2k \pm 1$	• $n \text{ is odd} \Rightarrow n = 2k \pm 1 \ (k \in \mathbb{Z})$
	• continues proof : simplifies $n = 2k \pm 1$	• $\Rightarrow n^4 - 1 = 16k^4 \pm 32k^3 + 24k^2 \pm 8k$
	• completes proof : common factor of 8	• $\Rightarrow n^4 - 1 = 8(2k^4 \pm 4k^3 + 3k^2 \pm k)$ which is divisible by 8

	Give one mark for each •	Illustrations for awarding each mark
10(<i>a</i>)	3 3	
	ans: $\frac{3}{2(x-3)} - \frac{3}{2(x+3)}$	
	2 marks	
	2 marks	• $\frac{3}{2(x-3)}$
	• first fraction	2(x-3)
	• second fraction	• $-\frac{3}{2(x+3)}$
		2(x+3)
10(b)	. 3. 1	
	ans: $1 + \frac{3}{2} \ln \frac{1}{2}$	
	divides correctly	9
	 integrates correctly 	• $1 + \frac{9}{x^2 - 9}$
		• $x + \frac{3}{2}\ln x-3 - \frac{3}{2}\ln x+3 $
		$\left(1+\frac{3}{2}\ln -2 -\frac{3}{2}\ln 4 \right)-$
	• substitutes limits correctly	$\left(\begin{array}{ccc} 2 & 2 \\ \end{array}\right)$
		• $\left(1 + \frac{3}{2}\ln -2 - \frac{3}{2}\ln 4 \right) - \left(0 + \frac{3}{2}\ln -3 - \frac{3}{2}\ln 3 \right)$
	• evaluates correctly	
		• $1 + \frac{3}{2}(\ln 2 - \ln 4)$
11(<i>a</i>)	ans: $x = -3 & y = x - 3$	
	3 marks	
	• states equation of vertical asymptote	• $x = -3$
	• divides correctly	• $f(x) = x - 3 + \frac{12}{x + 3}$
	• states equation of oblique asymptote	• $y = x - 3$
11(<i>b</i>)	ans: $(0,0) \rightarrow$ minimum turning point;	
	$(-6,-12) \rightarrow \text{maximum turning point}$	$m^2 + 6m$
	5 marks	• $f'(x) = \frac{x^2 + 6x}{(x+3)^3}$
	• differentiates correctly	• $f'(x) = 0 \Longrightarrow x = 0,-6$
	finde y econdinates of statisments	• $f(x) = 0 \implies x = 0, -0$ • $(0,0) \& (-6, -12)$
	finds <i>x</i>-coordinates of stationary pointsfinds <i>y</i>-coordinates of stationary points	
	 finds second derivative or nature table 	• $f''(x) = \frac{(2x+6)(x+3)^2 - 2(x^2+6x)(x+3)}{(x+3)^4}$
	• correct nature of both points	• $f''(0) > 0 \Rightarrow (0,0) Min.T.P. \&$ $f''(-6) < 0 \Rightarrow (-6,-12) Max T.P.$
		$f''(-6) < 0 \Longrightarrow (-6, -12) Max.T.P.$

	Give one mark for each •	Illustrations for awarding each mark
11(<i>c</i>)	ans: correct graph2 marks	3
	turning points showncompletes graph	 correct turning points correct behaviour at asymptotes
	see graph on next page	
11(<i>d</i>)	ans: (0,10) & (-6,22) 2 marks	
	one point correctsecond point correct	 (0,10) (-6,22)
12(<i>a</i>)	ans: Proof 4 marks	
	 knows how to find common difference simplifies correctly knows how to find sum of first 10 terms 	• $1 + \frac{1}{\sqrt{2}} - (1 + \sqrt{2})$ • $\frac{1}{\sqrt{2}} - \sqrt{2} = \frac{1 - 2}{\sqrt{2}} = \frac{-1}{\sqrt{2}}$ • $\frac{10}{2} \left[2(1 + \sqrt{2}) + (10 - 1) \left(\frac{-1}{\sqrt{2}}\right) \right]$
	• simplifies correctly	• $5\left(2+2\sqrt{2}-\frac{9}{\sqrt{2}}\right)=\ldots=\frac{5}{2}(4-5\sqrt{2})$
12(<i>b</i>)	ans: Proof5 marks	
	• knows to find common ratio	$\bullet \frac{1+\frac{1}{\sqrt{2}}}{1+\sqrt{2}}$
	• finds common ratio correctly	• $\frac{1}{\sqrt{2}}$
	• justifies that sum to infinity exists	$\bullet -1 < \frac{1}{\sqrt{2}} < 1$
	• knows how to find sum to infinity	$\bullet \frac{1+\sqrt{2}}{1-\frac{1}{\sqrt{2}}}$
	• simplifies correctly	• $\frac{\sqrt{2}+2}{\sqrt{2}-1} = \dots = 4 + 3\sqrt{2}$

	Give one mark for each •	Illustrations for awarding each mark
13	 Give one mark for each • ans: t = 3 6 mark knows how to find volume of solid finds limits of integration integrates correctly 	s • $V = \int \pi(y-4)dy$ • $1 \rightarrow 5, t \rightarrow t^2 + 4$ • $\pi \left\lfloor \frac{y^2}{2} - 4y \right\rfloor$
	• substitutes limits correctly	• $\pi \left\{ \left(\frac{(t^2 + 4)^2}{2} - 4(t^2 + 4) \right) - \left(\frac{5^2}{2} - 4(5) \right) \right\}$ • $40\pi = \pi \left(\frac{t^4}{2} - \frac{1}{2} \right)$
	• equates volumes	• <i>t</i> = 3
	• solves for <i>t</i> correctly	

TOTAL MARKS = 74

Q11 (c)

Higher Still - 2006 / 2007

MATHEMATICS

Advanced Higher Grade – Mini Prelim (Unit 3 + Units 1/2 Revision)

Time allowed - 1 hour 20 minutes

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer **all** questions.
- 3. Full credit will be given only where the solution contains appropriate working.
- 4. This test contains questions graded at all levels.

1. Find the general solution of the differential equation

$$x\frac{dy}{dx} + (x-2)y = x^4.$$
 5

2

Given that $y = 5e^{-1}$ when x = 1, find the particular solution.

2. (a) Show that the matrix
$$A = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 0 & 2 \\ 2 & 3 & 1 \end{pmatrix}$$
 is non-singular. 3

(b) Use elementary row operations to find
$$A^{-1}$$
. 5

(c) **Hence** solve the system of equations

$$2x + y + 4z = 2x + 2z = 32x + 3y + z = -6.$$
 2

3.	(<i>a</i>)	Obtain the first five terms in the Maclaurin expansion of $(1+3x)^{\frac{5}{3}}$.	4
	<i>(b)</i>	For what values of x is this series valid?	2
	(C)	Use the expansion to find an approximation for $1.9^{\frac{5}{3}}$.	2
4.	(<i>a</i>)	Express 458_6 in base 8.	3
	(<i>b</i>)	Prove by induction that $n(n + 1)(n + 2)$ is divisible by 6 for all positive integers <i>n</i> .	6

5. A function y(x) is defined implicitly by $x^3 + 4xy = 3$.

Obtain formulae for
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ in terms of x and y only. 5

Hence evaluate
$$\frac{dy}{dx}$$
 at (1, 0) and $\frac{d^2y}{dx^2}$ at (2,-1). 2

6. (*a*) Find the point of intersection of the line L_1

$$\frac{x-6}{2} = \frac{y+2}{1} = \frac{z+7}{-3}$$

and the plane with equation 3x - y - 2z = 12.

(b) Find the point of intersection of the line L_1 and the line L_2

$$\frac{x-6}{-1} = \frac{y+7}{2} = \frac{z}{-2}.$$

4

2

5

7. Let $z = \frac{1}{\cos\theta + i\sin\theta}$.

- (a) Use de Moivre's theorem to express z^5 in the form $\cos p\theta i\sin p\theta$, where p is a natural number.
- (b) Use the binomial theorem to express $\sin 5\theta$ in the form

$$q\sin\theta + r\sin^3\theta + t\sin^5\theta$$
,

and state the values of q, r and t.

[END OF OUESTION PAPER]

	Give one mark for each •	Illustrations for awarding each mark
1	ans: $y = x^3 - x^2 + \frac{Cx^2}{e^x}$ 5 marks	
	$y = x^3 - x^2 + \frac{5x^2}{e^x}$ 2 marks	
	 knows to find integrating factor correctly finds correct integrating factor uses integrating factor correctly uses integration by parts correctly finds general solution correctly substitutes conditions correctly finds particular solution correctly 	• $e^{\int \frac{x-2}{x}dx}$ • $\frac{e^x}{x^2}$ • $\frac{e^x}{x^2}y = \int xe^x dx$ • $xe^x - \int e^x dx$ • $y = x^3 - x^2 + \frac{Cx^2}{e^x}$ • $5e^{-1} = 1 - 1 + \frac{C}{e}$ • $C = 5$
2(a)	 ans: det A = 3 ≠ 0 3 marks knows how to find the determinant of a 3×3 matrix finds determinant correctly 	• det $A = \begin{vmatrix} 2 & 1 & 4 \\ 1 & 0 & 2 \\ 2 & 3 & 1 \end{vmatrix}$ • 3
	• correct explanation	• Since $ A \neq 0$, A is non-singular
2(<i>b</i>)		

	ans: $A^{-1} = \frac{1}{3} \begin{pmatrix} -6 & 11 & 2 \\ 3 & -6 & 0 \\ 3 & -4 & -1 \end{pmatrix}$	
	5 markscorrect augmented matrix	
	• one correct row	
	• a second correct row	• $\begin{pmatrix} 0 & 0 & 1_1 & \frac{-4}{3} & \frac{-1}{3} \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0^{-2} & \frac{11}{3} & \frac{2}{3} \end{pmatrix}$
	• the third row correct	• $\begin{pmatrix} 1 & 0 & 0^{-2} & \frac{11}{3} & \frac{2}{3} \\ & & & \end{pmatrix}$
	• identifies A^{-1}	• $A^{-1} = \begin{pmatrix} -2 & \frac{11}{3} & \frac{2}{3} \\ 1 & -2 & 0 \\ 1 & \frac{-4}{3} & \frac{-1}{3} \end{pmatrix}$
2(c)	ans: $x = 3, y = -4, z = 0$	
	2 marks	$\begin{pmatrix} -6 & 11 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ \end{pmatrix}$
	• knows to pre-multiply both sides by A^{-1}	• $\frac{1}{3} \begin{pmatrix} -6 & 11 & 2 \\ 3 & -6 & 0 \\ 3 & -4 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -6 \end{pmatrix}$
	• correct solution	• $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix}$
3(a)	ans: $(1+3x)^{\frac{5}{3}} = 1+5x+5x^2-\frac{5}{3}x^3+\frac{5}{3}x^4$	
	4 marks	
	• evaluates $f(0) \& f'(0)$ correctly	• $f(0) = 1 \& f'(0) = 5$
	 evaluates f''(0) correctly 	• $f''(0) = 10$
	• evaluates $f'''(0) \& f^{iv}(0)$ correctly	• $f'''(0) = -10 \& f^{iv}(0) = 40$

	correct expansion	•	Correct expansion
3(b)	ans: $ x < \frac{1}{3}$ 2 marks • knows range of validity • solves inequality	•	$\begin{aligned} 3x &< 1\\ x &< \frac{1}{3} \end{aligned}$
3(c)	 ans: 2.9185 use expansion correctly correct approximation 	•	$(1+3(0\cdot3))^{\frac{5}{3}} = 1+5(0\cdot3)+5(0\cdot3)^2 - \frac{5}{3}(0\cdot3)^3 + \frac{5}{3}(0\cdot3)^4$ 2.9185

4(<i>a</i>)	ans: 266 ₈ 3 1	marks	
	• changes to base 10		• $458_6 = 182$
	 repeated division by 8 		• $182 \div 8 = 22 \text{ r } 6, 22 \div 8 = 2 \text{ r } 6, 2 \div 8 = 0 \text{ r } 2$
	• correct answer in base 8		• 266 ₈
4(<i>b</i>)	ans: Proof 6 r	narks	
	 knows how to start proof; e.g. true for n assume true for n=k statement for n=k+1 continues proof : consider n odd 	n=1	 n=1:1(1+1)(1+2) = 6 which is divisible by 6 n=k:k(k+1)(k+2) [=6L] is divisible by 6 n=k+1:(k+1)(k+2)(k+3) is divisible by 6 <u>k odd</u> [=2m+1]- (k+1)(k+2)(k+3) =6L+3(k+1)(k+2) =6L+3(2m+2)(2m+3)
	• continues proof : consider <i>n</i> even		=6[L+(m+1)(2m+3)] which is divisible by 6 • <u>k even</u> [=2m]- (k+1)(k+2)(k+3) =6L+3(k+1)(k+2) =6L+3(2m+1)(2m+2)
	• completes proof		 =6[L+(2m+1)(m+1)]which is divisible by 6 Since true for n=1 and [true for n=k ⇒ true for n=k+1], the result is true for all positive integers n.
5	ans: $\frac{dy}{dx} = \frac{-3}{4}x - \frac{y}{x}$		
	$\frac{d^2 y}{dx^2} = \frac{2y}{x^2}$ $\frac{dy}{dx} = \frac{-3}{4}$ 5 1	marks	
	$\frac{d^2 y}{dx^2} = \frac{-1}{2}$	marks	
	• knows how to use implicit differentiation	on	• $3x^2 + 4y + 4x\frac{dy}{dx} = 0$
	• differentiates correctly		• $\frac{dy}{dx} = \frac{-3}{4}x - \frac{y}{x}$
	• knows how to find second derivative		• $\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$
	• differentiates correctly		• $\frac{-3}{4} - \left\{ -x^{-2}y + x^{-1}\frac{dy}{dx} \right\}$
	• finds simplified answer (in terms of <i>x</i> only)	and y	• $\frac{d^2 y}{dx^2} = \frac{2y}{x^2}$
	 evaluates first derivative correctly evaluates second derivative correctly 		• $\frac{-3}{4}$ • $\frac{-1}{2}$

6(<i>a</i>)	ans: (2,-4,-1) 4 marks	
	 expresses x, y and z in terms of t substitutes in plane equation solves for t correct point 	 x = 2t + 6, y = t - 2, z = -3t - 7 3(2t + 6) - (t - 2) - 2(-3t - 7) = 12 t = -2 (2,-4,-1)
6(<i>b</i>)	ans: (4,-3,-4)	
	 4 marks • correct system of equations • integrates correct value for t • correct value for s • correct point 	 2t + s = 0, t - 2s = -5, -3t + 2s = 7 t = -1 s = 2 (4,-3,-4)
7(<i>a</i>)	 ans: z⁵ = cos 5θ - i sin 5θ 2 marks applies de Moivre's theorem correctly express answer in correct form 	• $\cos(-5\theta) + i\sin(-5\theta)$ • $\cos 5\theta - i\sin 5\theta$
7(b)	ans: $\sin 5\theta = 5\sin \theta - 20\sin^3 \theta + 16\sin^5 \theta$ q = 5, r = -20 & t = 16	
	 5 marks uses the binomial theorem correctly equates imaginary parts substitutes correctly simplifies correctly correct values of <i>q</i>, <i>r</i> & <i>t</i>. 	$z^{5} = (\cos\theta)^{5} + 5(\cos\theta)^{4}(-i\sin\theta) +$ • $10(\cos\theta)^{3}(-i\sin\theta)^{2} + 10(\cos\theta)^{2}(-i\sin\theta)^{3} +$ $5(\cos\theta)(-i\sin\theta)^{4} + (-i\sin\theta)^{5}$ • $\sin 5\theta = 5\cos^{4}\theta\sin\theta - 10\cos^{2}\theta\sin^{3}\theta +$ $\sin^{5}\theta$ • $5(1-\sin^{2}\theta)^{2}\sin\theta - 10(1-\sin^{2}\theta)\sin^{3}\theta$ $+\sin^{5}\theta$ • $5\sin\theta - 20\sin^{3}\theta + 16\sin^{5}\theta$ • $q = 5, r = -20 \& t = 16$

TOTAL MARKS = 56